17 research outputs found

    Identification and Characterization of 2′-Deoxyadenosine Adducts Formed by Isoprene Monoepoxides in Vitro

    No full text
    Isoprene, the 2-methyl analog of 1,3-butadiene, is ubiquitous in the environment, with major contributions to total isoprene emissions stemming from natural processes despite the compound being a bulk industrial chemical. Additionally, isoprene is a combustion product and a major component in cigarette smoke. Isoprene has been classified as possibly carcinogenic to humans (group 2B) by IARC and as reasonably anticipated to be a human carcinogen by the National Toxicology Program. Isoprene, like butadiene, requires metabolic activation to reactive epoxides to exhibit its carcinogenic properties. The mode of action has been postulated to be that of a genotoxic carcinogen, with formation of promutagenic DNA adducts being essential for mutagenesis and carcinogenesis. In rodents, isoprene-induced tumors show unique point mutations (A→T transversions) in the K-ras protooncogene at codon 61. Therefore, we investigated adducts formed after reaction of 2′-deoxyadenosine (dAdo()) with the two monoepoxides of isoprene, 2-ethenyl-2-methyloxirane (IP-1,2-O) and propen-2-yloxirane (IP-3,4-O), under physiological conditions. The formation of N1–2′-deoxyinosine (N1-dIno) due to deamination of N1-dAdo adducts was of particular interest, since N1-dIno adducts are suspected to have high mutagenic potential based on in vitro experiments. Major stable adducts were identified by HPLC, UV-Spectrometry and LC-MS/MS and characterized by (1)H and (1)H,(13)C HSQC and NMR experiments. Adducts of IP-1,2-O that were fully identified are: R,S-C1-N(6)-dAdo, R-C2-N(6)-dAdo, and S-C2-N(6)-dAdo; adducts of IP-3,4-O are: S-C3-N(6)-dAdo, R-C3-N(6)-dAdo, R,S-C4-N(6)-dAdo, S-C4-N1-dIno, R-C4-N1-dIno, R-C3-N1-dIno, S-C3-N1-dIno, and C3-N7-Ade. Both monoepoxides formed adducts on the external and internal oxirane carbons. This is the first study to describe adducts of isoprene monoepoxides with dAdo. Characterization of adducts formed by isoprene monoepoxides with deoxynucleosides and subsequently with DNA represent the first step toward evaluating their potential for being converted into a mutation, or as biomarkers of isoprene metabolism and exposure
    corecore